
Predicting Game Popularity from Steam Descriptions

Joseph Liu

Abstract
In many cases, game descriptions are some of the
first places where potential players learn about
games. Therefore, it is imperative that publishers
and developers write interesting descriptions that
positively impact sales. In this project, we inves-
tigate the correlation between game descriptions
and game popularity, independent from gameplay,
using various models. We begin with a classifica-
tion problem, including our baseline, Softmax Re-
gression and our best model, Bidirectional RNN,
and also experiment with different data represen-
tations and eventually regression. We conclude
that while much of a game’s popularity is asso-
ciated with gameplay, the description also has a
non-negligible impact on popularity.
Code Link:
https://github.com/jliu7350/csci467 final project

1. Introduction
The game industry has grown significantly since the
advents of PCs, or personal computers, and smartphones.
In this study, we will investigate the popularity of PC
games specifically and its relation to game descriptions.
This problem is especially significant for smaller indie
developers who have a smaller marketing budget. A good
description will naturally draw more players, increasing
profits with few additional resources. The ability to get
feedback on draft descriptions could help developers retain
players that stumble upon the store page - a valuable source
of income for those who can’t afford much publicity.
Steam is the world’s largest game distribution service, and
is the most straightforward location to find data. For this
study, we use the descriptions that games provide on their
Steam page as our dataset, and the number of reviews that
a game has as a measure of popularity. Using these, we
build a model to output the popularity of a game given
its natural language/text description as input. We utilize
a variety of techniques, including both classification and
regression. We begin with a softmax classifier as our
baseline, with labels created by binning our popularity
measure and representing inputs in a bag-of-words format.
We additionally experiment with Naive Bayes and Support

Vector Machines with a similar setup. Lastly, we implement
a Recurrent Neural Network using word vectors as input.
For this model, we tried classification, with the same labels
as before, and experimented with regression. Our work
shows that while there is some correlation between the
description and popularity, much of a game’s popularity is
dependent on additional external factors.

2. Related Work
Much related work has been done in analyzing game pop-
ularity. Previous efforts include game tags (Zhang et al.,
2020) and more commonly, review sentiment (Ji, 2019; Zuo,
2018). It was found that throughout the epidemic, mentions
of COVID-19 in reviews rose, along with the popularity
of adventure games. It was proposed that this was a result
of quarantine measures, especially in China. This analysis
was conducted with Linear Regression, Support Vector Ma-
chines, and Decision Trees. In all three cases, the model
was trained to predict differences in ownership based on
weekly data, and then choosing the tags of the games with
the greatest difference. This work was quite different, as the
dataset was primarily based on COVID information rather
than details about the game itself.
Additionally, sentiment analysis was done on reviews, and
results of 70-80% accuracy were achieved in classifying
reviews as either negative or positive, across both balanced
and unbalanced datasets. Zuo’s work, for example, was
done with Naive Bayes and Decision Trees. The goal was
to predict the sentiment (positive or negative) given the text
in a review. However, no work regarding the popularity of
games specifically, nor the use of the game description as
a dataset, was found. As this field seems to be relatively
niche, there is significant potential for future work.

3. Dataset and Evaluation
For our dataset, we have scraped Steam’s website for the
description. The description plaintext was located with the
game area description HTML id and extracted us-
ing BeautifulSoup4 1. Additionally, we have found a dataset

1https://www.crummy.com/software/
BeautifulSoup/

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/

on Kaggle, the ”Steam games complete dataset” 2, with
supplementary information including review counts, game
names, and tags. After filtering out non-game content (e.g.
DLCs or other apps), we have a total of 17363 games. While
the complete dataset has 21 columns, the only relevant
features are url, name, types, all reviews,
developer, publisher, game description.
We have also preprocessed the data, extracting certain
features. Notably, we have extracted the total number of
reviews from all reviews and the ID from url.
We will now briefly explain how we use each of the relevant
features. The game name, developer name, and publisher
name features are all used as blacklists. In particular,
large game studios (e.g. Ubisoft or Bethesda) have names
that often show up in descriptions of their games. Any
occurrence of this text in our dataset, especially in a
bag-of-words representation, will cause overfitting due to
their games’ popularities. Additionally, due to the number
of games that large companies release, it is possible for
these to enter our final vocabulary for bag-of-words, even if
we limit it to the few thousand most common words. We
remove these words from the token lists for each description
to prevent this. Next, the number of total reviews was
extracted from the all reviews column, which is
plaintext. This is also used to generate an additional column,
the class of each game (more details on labels later). Lastly,
the type was used to filter out games from Downloadable
Content (DLCs, or expansion packs), and the url was used
to download the game description through web scraping.
The description itself also required processing. We
started by tokenizing the words, by stripping all non-
alphanumerical characters and converting the string to
lowercase. We then filter out names, as discussed above,
and use NLTK 3 to tokenize the words. Them we use the
NLTK stopword corpus to remove common but useless
words, such as ”a”, ”the”, or ”and”. From here, we create
two separate datasets formats.
The first is a bag-of-words representation, used for our
simpler models. To do this, we first stem our tokens,
also using NLTK. After this, we use scikit-learn’s4

CountVectorizer to convert the list of tokens to a
bag-of-words representation. Notably, this utility allows a
max feature limit, which would return the n most common
words. We vary this value as a hyperparameter, which we
will discuss later.
The second format is word vectors, specifically GloVe
5. GloVe is similar to word2vec, in that it measures
word co-occurrence. The main difference is that GloVe
does this globally, while word2vec does it locally. To

2https://www.kaggle.com/datasets/
trolukovich/steam-games-complete-dataset

3https://www.nltk.org/
4https://scikit-learn.org/stable/
5https://nlp.stanford.edu/projects/glove/

get these embeddings, we use a pretrained mapping,
glove-wiki-gigaword-50, provided by the gensim
6 Python package. This mapping was chosen out of all
the mappings provided by gensim (including other GloVe
and word2vec mappings) because of two reasons. First,
its data source includes Wikipedia, which is a much more
”balanced” dataset compared to Google News. Articles
containing the words ”World War 2”, for example, often
carry (and rightly so) negative connotations in news articles.
However, for the purposes of games, it is used in describing
historical settings. Wikipedia is much more balanced in that
there are many articles that describe World War 2 that focus
on historical events, like battles. These pages carry more
associations with the setting and the historical backdrop that
these events are occurring in than the emotions you may
find in news articles. Our second reason is that we want an
embedding that is relatively small. Our chosen mapping
is 50-dim, while word2vec is 300-dim. This difference is
important, as due to the relatively small size of our dataset,
there are most probably multiple words that appear only
once or twice. With large embeddings there are significantly
more parameters, leading to potential overfitting. Using this
information, for each description, we take the token list
from before (with stopwords removed) and replace each
token with its embedding from gensim. A total of 24 empty
lists are removed, for a total of 17339 remaining games for
this dataset.
Since we are using both classification and regression, we
need to create labels that can accommodate both. For our
regression case, we use the number of reviews a game has
as our objective. The problem with this approach is the
imbalance of data: 60% of our data has under 107 reviews,
and the top 5% have more than 22000 each. Should we
train on this data directly, the model would learn to give
every game a small number, because that’s where the vast
majority are. To counteract this, we note that we actually
don’t care about how many reviews a game has, only how
many it has relative to other games. A game with 1000
reviews in a vacuum (that is, without knowledge of how
many players play games in general) is neither popular
nor unpopular. Therefore, we redistribute the data using
y = log(log(yactual)) − 1.45. This has the effect of
significantly flattening the original spike in the data, as well
as somewhat normalizing it to be between -1 and 1 with a
mean at 0.0009 ≈ 0.
For the classification task, we must divide the data into
distinct classes. We start by splitting the games into
five roughly equally-sized classes, ordered by number
of reviews. The classes were, in increasing order,
0 − 18, 19 − 39, 40 − 107, 108 − 445, and 446+ reviews,
with 3427, 3439, 3521, 3498, 3448 data points respectively.
The boundaries of these classes, can be seen in Figure

6https://radimrehurek.com/gensim/

https://www.kaggle.com/datasets/trolukovich/steam-games-complete-dataset
https://www.kaggle.com/datasets/trolukovich/steam-games-complete-dataset
https://www.nltk.org/
https://scikit-learn.org/stable/
https://nlp.stanford.edu/projects/glove/
https://radimrehurek.com/gensim/

1, overlaid on the recalculated distribution. Note that
these numbers were selected purely for creating relatively
balanced classes. We index the classes in increasing order
(that is, class 4 has the most reviews and class 0 the fewest),
and will refer to these in later sections.

We also split the data into train/test/dev sets with a

Figure 1. Distribution of games, after redistribution, with class
boundaries drawn in red.

70/15/15% ratio. As our dataset is relatively large, we
can afford to have proportionally smaller dev and test sets.
Our resulting bag-of-words datasets have 12154, 2605,
and 2604 for the train, dev, and test sets respectively, with
the samples from each class roughly balanced between
them. Our word vector datasets have 12137, 2601, and
2601 respectively.
Due to the fact that our classification dataset is relatively
balanced, we can use accuracy as a simple metric. We
will also examine confusion matrices to determine model
performance. While precision and recall are still possible,
due to the multi-class nature of our work, we would need
one number per class which is much harder to interpret.
For regression, we will simply use Mean Squared Error
(MSE). Additionally, we will bin our outputs in the same
way as the original dataset, to compare those results with
the classification models.

4. Methods
We begin by framing this as a classification problem, with
the description as input and the popularity as output. An
intuitive way to measure popularity is by number of reviews.
A game with few reviews is clearly unpopular, and a game
with many positive reviews is clearly popular. However, a
game with many negative reviews is actually interesting as
well: It means that many players have tried it, and hence the
description itself is attractive. As such, we choose this as
our target.
As our baseline, we use a simple softmax classifier with
bag-of-words as input. That is, we count the number of
occurrences of each word in a preset dictionary (the top
n most common tokens in our entire dataset, excluding
stopwords) and convert the counts to a vector, without ac-

counting for word position. This vector is then used as our
input. The length of the vector, n is determined by our cho-
sen dictionary size. As we have already removed stopwords
and stemmed tokens, the majority of the remaining words
will be relatively information dense. However, we also do
not wish to have overfitting due to recognizing certain rare
words. Therefore, we will experiment with different dictio-
nary sizes as a hyperparameter.
After finding the input vectors, we pass them into our soft-
max model, implemented with scikit-learn. Our chosen
solver is Stochastic Average Gradient descent, which is the
most similar to the gradient descent covered in class. Specif-
ically, during training, it selects one sample at random and
updates its gradient only, instead of computing the gradi-
ents of all examples. The gradients of all other samples are
kept from the previous iteration. That is, when calculating
the gradient, it computes ∇fi(w) for exactly one i, where
∇f(w) =

∑
i fi(w). This is opposed to standard Stochas-

tic Gradient descent, where ∇fi(w) is computed for all i in
the batch. The update rule remains the same, as does eval-
uation: p(y = 1|x) = exp(w(j)T x)∑c

k=1
exp(w(k)T x

, as per standard

softmax regression. The scikit-learn implementation addi-
tionally implements L2 regularization. The maximum of
the resulting vector is then used as our prediction. Logistic
Regression has few parameters, and as this is our baseline,
the only hyperparameter we change is max iter, which
increases the number of iterations training can run for. This
is done to prevent a convergence error.
Our second model is Naive Bayes with Laplace Smoothing.
The scikit-learn implementation is standard, and the same
as what was covered in lecture. Specifically, we use the
MultinomialNB class. As from lecture, we have:

p(xj = u|y = k) =
count(xj = u, y = k) + λ∑n

i=1 1[y
(i) = k]di + |v|λ

Our input vector is evaluated with this equation, and the
class with the maximum p is returned. Naive Bayes has no
hyperparameters except for the smoothing parameter. While
we experiment with various values to account for the sparse
nature of our input matrix, it seems to have little impact (see
Figure 2), so we use the default value of 1.
Our third model is the Support Vector Machine. As scikit-

learn offers many implementations, we have spent some
time to research them. Ultimately, we chose to use the
LinearSVC class. Experimenting with SVC shows that
due to the number of features and quadratic runtime, it takes
significantly longer but does not seem to show much im-
provement and wasn’t covered in class (the Linear SVM
implementation was). Therefore, we chose the Linear SVM.
It does not use a kernel, and thus is minimizing the function∑n

i=1 max(0, 1− yi(w
Txi + b)) + λ||w||2. Note that the

scikit-learn implementation includes L2 loss. Different from
lecture, however, it uses Squared Hinge Loss. That is, the

Figure 2. Naive Bayes performance on dev set with different
smoothing parameters

summation has the form
∑n

i=1 max(0, 1− yi(w
Txi+ b))2.

All other implementation details seem to be identical to what
was covered in class. Our binary prediction is ultimately
computed by sign(wTx + b). The scikit-learn implemen-
tation has one such classifier for each class, where positive
signals the class and negative signals any of the other classes.
The maximum of the classifiers (argmax) is taken as the fi-
nal output.
In all three cases above, we use the bag-of-words input.
This is passed through the chosen model, p is computed,
and the maximum is chosen as the model’s prediction. All
hyperparameter tuning (for all models) is done by training
on the train set and evaluating on the dev set.
Our last model is a Recurrent Neural Network. Clearly,
the bag-of-words input that we have used thus far won’t
work with RNNs, and we therefore switch to word vectors.
Our RNN architecture utilizes bidirectional Gated Recurrent
Units, or GRUs, as discussed in lecture. That is, there are
two distinct RNNs, with the reversed input passing through
one of them, one word vector per time step, and the regular
input passing through the other, again with one word vector
per time step (Figure 3). The outputs of the two are concate-
nated, and passed through a ReLU (for non-linearity) and
Dropout layer (randomly removing connections to prevent
overfitting). The final linear layer has either five neurons,
for classification, or one neuron, for regression. This ar-
chitecture and data representation, as mentioned previously,
will provide much more information about context and word
meaning than a simple bag-of-words model. As this was our
main problem with bag-of-words (see sections 5 and 6), our
new architecture will allow us to find more detailed patterns
about word usage. Now, we will discuss each of the various
layers as well as the hyperparameters in them.
The first layer each input reaches is the GRU. As the
GRU is a variant of an RNN node, it has ”time steps”,
with a hidden state persisting through it. The input for
each time step in our case is simply the next word vec-
tor in the input. Given this input xt, the GRU first com-
putes rt = σ(Wirxt + bir + Whrh(t−1) + bhr) and zt =
σ(Wizxt+biz+Whzh(t−1)+bhz). rt is the reset gate, and

essentially decides how much past information to discard.
The higher it is, the more information from the past it pre-
serves into the output. zt, on the other hand, is the update
gate, which decides how much of the previous hidden state
should be copied forward, as opposed to the new informa-
tion. That is, if zt = 1, then it carries over all of the past
information and ignores the new input. After this, it com-
putes nt = tanh(Winxt + bin + rt ∗ (Whnh(t−1) + bhn)),
or the new gate. This is the new hidden state, which is
then modified by the update gate to get the final output
ht = (1− zt) ∗ nt + zt ∗ h(t−1). Combined, this allows us
to remember states longer. The hyperparameters we tune
here are the dropout probability (p=0.5, between each layer
of the GRU), the hidden state size, and the number of layers.
For the hidden state size and number of layers, we search
a variety of options and graph the losses incurred by each
(see Experiments).
After passing through the GRU, the two last hidden states
(forwads and backwards) are concatenated and passed
through a ReLU and Dropout, as mentioned earlier. The
only parameter is with dropout, and we use p=0.5. Lastly,
in the Linear layer, we change the number of neurons
depending on whether we are doing classification or re-
gression. For classification, we have five neurons in a
linear layer (y = xA⊤ + b), followed by a log-softmax
(LogSoftmax(xi) = log(exi

Σje
xj)). Then, we take the neg-

ative log-likelihood loss (−xn,yn
where x is the input, y is

the target) relative to the actual class of the datapoint. We
also experiment with regression, for which we simply take
the output of the final neuron and calculate its error (Mean
Squared Error, specifically) with respect to the redistribu-
tion. All of this is implemented using the standard Pytorch
layers, and all the equations come from the documentation
on the Pytorch website also.7

Figure 3. RNN Model Architecture

5. Experiments
We will now discuss the results of each of our models.
Figure 4 (below) displays the accuracy of the bag-of-words
models (the baseline, Naive Bayes, and SVM) over various

7https://pytorch.org/docs/stable/index.
html

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

feature vector sizes on the dev set. We also include a fourth
line at ≈ 0.2027 representing the best possible prediction
by just picking class 2 always.
We notice that all these models were significantly better

Figure 4. Dev Accuracy of Models by Feature Vector Size

than guessing, and that improvement is very fast as the
number of features increases initially but flattens out
quickly as well. We also note that softmax regression
(in blue) performs surprisingly well compared to the
other two techniques, despite being the baseline. By
contrast, Naive Bayes performed poorly, possibly due to
feature dependence. For all three models, however, we
find a peak at a feature vector size of ≈ 1500, so we
evaluate the model on the test set and create confusion
matrices there (Figure 5). The accuracies are also in Table 1.

Figure 5. Confusion Matrices of Classification Models on Test Set

Surprisingly, Naive Bayes did better than the other two
models on the testing set. This could be explained by the
variation seen in accuracy on the dev set. Clearly, there are
large amounts of oscillation, with accuracy both falling and
rising quite drastically. Therefore, 1500 might be a point
where Softmax and SVM happen to have good performance
on the dev set, with Naive Bayes happening to have a worse
performance.

Model Accuracy on Test Set

Logistic Regression 26.23%
Naive Bayes 28.38%
SVM 25.81%
RNN (Classification) 31.99%
RNN (Regression into Binning) 23.57%
Random Choice 20.03%

Table 1. Peak accuracies of each model

Now, we will turn our attention to our RNN model. We first
find the hyperparameters, testing out various combinations
for different numbers of hidden layers and the size of the
hidden state. While batching is a possibility, we found that
the highly varying input lengths resulted in unnecessary
complexity, so we chose a simpler batch size of 1. For this
training, we use 20 epochs at a relatively high learning rate
of 0.0005. As this is an exploration of the hyperparameter
space, we decided to sacrifice some accuracy in order to
explore more combinations. From these experiments, it is
shown that the model with 16-dim hidden state and 3 layers
has the lowest loss (≈ 1.5150) on the dev set at epoch 9
(shown in Figure 6), and we therefore take that as our final
model. On the test set, we were able to achieve an accuracy
of 31.99% with this model. We also see that it tends to favor
the two extremes (See figure 5, bottom-right), which shows
that the model is actually identifying relevant patterns.
Lastly, we test out regression with the similar architecture
described in section 4. While it is not the main focus, we
notice that generally, the upper-left and lower-right corners
of all the confusion matrices are brighter than the other two,
even if the classifier got the answer wrong. Therefore, we
decided to conduct a preliminary exploration of this area.
To convert this problem a regression problem, it suffices

Figure 6. Loss Curves on Dev Set by RNN Hyperparameters

to replace the linear layer from the classifier with a
single neuron, which is our output. From this, we can
simply use Mean Squared Error, which has the value
meann((xn − yn)

2). Training a model with the exact same
parameters (learning rate = 0.0005, 16-dim hidden state,
3 layers) as our ”best” classification model results in an

underwhelming model. We generate a confusion matrix
by binning the outputs in the same way as our inputs for
the classification task (Figure 7). While we have a similar
vaguely-diagonal pattern as before, the regression model
is basically always just guessing the middle class and thus
doesn’t perform particularly well. Therefore, we choose not
to explore this for the time being.

Overall, we find that our models are not that accurate,

Figure 7. Confusion Matrix of Regression RNN on Dev Set

regardless of data representation. Of course bag-of-words
has worse performance: By removing word contexts, it
makes it hard for the model to recognize what each word
means relative to the rest of the text. With many games,
both good and bad, having the same theme or setting, this
makes many features limited in use. Thus, it is possible
that all those models are limited by features, and produce
similar results. However, while the word vectors/RNN
combination does slightly better, the improvement isn’t
too drastic. Therefore, the primary limiting factor seems
something unrelated to our data representation.

6. Discussion
As our models got so many examples wrong, we will do a
general analysis of the results. First, from the confusion
matrices, it is evident that the model has found some
correlation between features and popularity. As noted
before, lower-left and upper-right sides of the matrices are
darker in all matrices. This shows that even when the model
does get it wrong, it’s not wrong by too much - it usually
has some idea of where it should go. As a result of this,
we conducted a preliminary investigation of regression.
However, the lacking results of regression suggests that
there is something else at play.
Secondly, we investigate the most impactful features in
our bag-of-words models. In particular, ”franchis” is very
impactful, being in the top 5 most important features in
multiple models. This makes sense, as franchises typically
are more successful. On the other hand, common words
like ”game” are among the least impactful, due to their
commonality in descriptions. Additionally, none of the
factors seem to be overfitting, as all the weights seem

reasonable. From this, we can conclude that one way to
increase accuracy is to remove dataset-specific common
words instead of just generally common words, but this will
still be limited by the representation.
Lastly, we will investigate cases where our RNN model
performed very poorly. A few games where the RNN
classified 4 (high) when it’s actually 0 (low) are NetHack:
Legacy, Dual Blades, and Blackjack In Space. While it is
difficult to explain a neural network exactly, there are a few
possible explanations for some of its decisions. Blackjack,
for example, is a really popular game, and its word vector
probably reflects this. Dual Blades’ description contains the
names of other very popular games, such as Street Fighter,
while NetHack: Legacy is a ”remaster” of NetHack. Again,
we know that words like ”remaster” typically are good
indicators of popularity. Overall, it will be much harder to
”fix” some of these errors, as they are valid features that
other games may have. To understand when a ”remaster” is
something that’s really hard to predict, and depends on the
original game. However, we can’t leak that information, as
it will make it too obvious what the current game is. It’s
possible that a Transformer architecture could manage this,
and this is an interesting direction for future work.
In other descriptions, however, it seems like there isn’t a
reason for the game to not be popular. Indeed, the dataset
we are working with is, by its very nature, quite ”noisy”
with respect to the description. A game can have no
description at all and still win Game of the Year. Ultimately,
it’s the game itself, and not the description, that is the
greatest factor in game popularity. In that sense, our model
has already performed quite well, and beyond expectations:
It has demonstrated that descriptions have a non-negligible
impact on the popularity of the game.

7. Conclusion
In this project, we have used a variety of models to pre-
dict game popularity from natural language descriptions.
We have explored the use of different classification mod-
els, including a baseline softmax regression, Naive Bayes,
SVMs, and the best-performing Bidirectional GRU. Ulti-
mately, however, changing the data representation, refram-
ing the task as a regression problem, and the many other
tweaks did not have a very significant impact on our per-
formance. It seems as though there are factors independent
of what we analyzed that impact our objective in a more
significant way than game descriptions. Ultimately, this
project has taught us that models are only as good as the
data they are given, and when there are few correlations to
be found, even the most complex of models will still have a
limit.

References
Ji, F. Sentiment analysis and opinion extraction of game

reviews on steam. 2019.

Zhang, J., Zhao, H., Chen, Z., Song, Z., et al. Prediction of
the most popular game tags on steam under the influence
of covid-19 based on machine learning and natural lan-
guage processing. The Frontiers of Society, Science and
Technology, 2(12), 2020.

Zuo, Z. Sentiment analysis of steam review datasets using
naive bayes and decision tree classifier. 2018.

